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Lorentz-Covariant Hamiltonian Formalism
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The dynamics of a classical system can be expressed by means of Poisson
brackets. In this paper we generalize the relation between the usual noncovariant
Hamiltonian and the Poisson brackets to a covariant Hamiltonian and new brackets
in the frame of Minkowski space. These brackets can be related to those used
by Feynman in his derivation Maxwell’s equations. The case of curved space is
also considered with the introduction of Christoffel symbols, covariant derivatives,
and curvature tensors.

1. INTRODUCTION

A remarkable formulation of classical dynamics is provided by Hamilto-
nian mechanics. This is an old subject. However, new discoveries are still
been made; we quote two examples among several: the Arnold duality trans-
formations, which generalize the canonical transformations,(1,2) and the exten-
sions of Poisson brackets to differential forms and multivector fields by
Cabras and Vinogradov.(3) In this context the transition from classical to
relativistic mechanics raises the question of Hamiltonian covariance, the
physical significance of which is discussed for example by Goldstein.(4)

In the first part of this paper we briefly recall the Poisson brackets
approach and the covariant Hamiltonian formalism. Then we introduce new
brackets to study the dynamics associated to this covariant Hamiltonian,
which define an algebraic structure between position and velocity, and does
not have an explicit formulation. We examine the close link between these
brackets and those used by Feynman for his derivation of the Maxwell
equations.(5–8) A very interesting way to arrive at the same sort of result was
found by Souriau in the frame of his symplectic classical mechanics.(9) In
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the final part of this work we consider the dynamics in curved space, using
Christoffel symbols, covariant derivatives, and curvature tensors expressed
in terms of these brackets.

2. BRIEF REVIEW OF ANALYTIC MECHANICS

2.1. Poisson Brackets

The dynamics of a classical particle in a 3-dimensional flat space with
vector position qi and vector momentum pi (i 5 1, 2, 3) is defined by the
Hamilton equations

5 q̇i 5
dqi

dt
5

H
pi

ṗi 5
dpi

dt
5 2

H
qi

(1)

where the Hamiltonian H(qi, pi) is a form on the phase space (the cotangent
fiber space). They can be also expressed in a symmetric manner by means
of Poisson brackets:

H q̇i 5 {qi, H}
ṗi 5 {pi , H}

(2)

These brackets are naturally defined as skew-symmetric bilinear maps on
the space of functions on the phase space in the following form:

{ f, g} 5
f
qi

g
pi

2
g
qi

f
pi

(3)

2.2. Covariant Hamiltonian

Except in the electromagnetic situation, the Hamiltonian is not the total
energy when it is time-dependent, and its generalization to relativistic prob-
lems with the M4 Minkowski space is not trivial because it is not Lorentz
covariant.

In the electromagnetic case the answer to this situation is given by the
introduction of the following covariant expression(4):

H 5 umpm 2 L 5 um1mum 1
q
c

Am2 (4)

where L is the usual invariant electromagnetic Lagrangian:
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L 5
1
2

mumum 1
q
c

umAm (5)

and um is the 4-velocity defined by means of the proper time tp , here used
as an invariant parameter:

um 5
dxm

dtp
(6)

Finally, we have the covariant Hamiltonian

H 5
1
2

mumum (7)

with the corresponding eight Hamilton equations:

5
H
pm

5
dxm

dtp
5 um

H
xm 5 2

dpm

dtp

(8)

It is interesting to recall that this structure is only possible in the situation
where the potential can be put in a covariant manner as in the theory of
electromagnetism.

3. LORENTZ COVARIANT HAMILTONIAN AND BRACKETS
FORMALISM

Now we want to generalize the relation between the usual noncovariant
relativistic Hamiltonian and the Poisson brackets to a covariant Hamiltonian
H and new formal brackets introduced in the frame of the Minkowski space.
It is important to remark that, in a different manner, Bracken also studied
the relation between this Feynman problem and the Poisson brackets.(10)

In this context a “dynamic evolution law” is given by means of a one
real-parameter group of diffeomorphic transformations:

g (IR 3 M4) → M4: g(t, x) 5 gtx 5 x(t)

The “velocity vector” associated to the particle is naturally introduced by

ẋm 5
d
dt

gtxm (9)

where the “time” t is not identified with the proper time, as we shall see
later. The derivative with respect to this parameter of an arbitrary function
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defined on the tangent bundle space can be written, by means of the covariant
Hamiltonian, as

df (x, ẋ,t)
dt

5 [H, f (x, ẋ,t)] 1
f (x, ẋ,t)

t
(10)

where for H we take the following definition:

H 5
1
2

m
dxm

dt

dxm

dt
5

1
2

mẋmẋm (11)

Equation (10) giving the dynamics of the system is the definition of our new
brackets structure, and is the fundamental equation of this paper.

We require for these new brackets the usual first Leibniz law:

[A, BC ] 5 [A, B]C 1 [A, C ]B (12)

and the skew symmetry:

[A, B] 5 2 [B, A] (13)

where the quantities A, B, and C depend of xm and ẋm.
In the case of the vector position xm(t) we have from (10)

ẋm 5 [H, xm] 5 m[ẋn, xm] ẋn (14)

and we easily deduce that

m[ẋn, xm] 5 gmn (15)

where gmn is the metric tensor of the Minkowski space.
As in the Feynman approach, the time parameter is not the proper time.

To see this we borrow Tanimura’s argument.(6) Consider the relation

gmn dxm

dtp

dxn

dtp
5 1 (16)

which implies

Fẋl, gmn dxm

dtp

dxn

dtp
G 5 0 (17)

and is in contradiction with

Fẋl, gmn dxm

dt
dxn

dtG 5 2
2
m

ẋl (18)

But differently from Feynman, the fact that gmn is the metric is a consequence
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of the formalism and is not imposed by hand. In addition, contrary to Feynman,
we do not need to impose the Leibniz condition:

d
dt

[A, B] 5 FdA
dt

, BG 1 FA,
dB
dtG (19)

(A and B being position- and velocity-dependent functions) because the time
derivative is given by the fundamental equation (10).

We impose the usual locality property:

[xm, xn] 5 0 (20)

which directly gives for an expandable function of the position or the velocity
the following useful relations:

5[xm, f (ẋ)] 5 2
1
m

f (ẋ)
ẋm

[ẋm, f (x)] 5
1
m

f (x)
xm

(21)

which reduce in the particular cases of the position and velocity to

5[xm, ẋn] 5 2
1
m

gmr ẋn

ẋr 5 2
1
m

ẋn

ẋm
5 2

gmn

m

[ẋm, xn] 5
1
m

gmr xn

xr 5
1
m

xn

xm
5

gmn

m

(22)

To compute the brackets between two components of the velocity we require
in addition the Jacobi identity:

[[ẋm, ẋn], xr] 1 [[xr, ẋm], ẋn] 1 [[ẋn, xr], ẋm] 5 0 (23)

which by using (15) gives

[ẋm, ẋn] 5 2
Nmn(x)

m
(24)

where Nmn(x) is a skew symmetric tensor.
The second derivative of the position vector is

ẍm 5
dẋm

dt
5 [H, ẋm] 5 Nmnẋn (25)

and we write

Fmn 5
m
q

Nmn (26)

in order to recover the Lorentz equation of motion.
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Remark 1. We can easily calculate

[H, H ] 5
1
4

m2[ẋmẋm, ẋnẋn] 5 2qẋmẋnFmn 5 0 (27)

and then deduce

dH
dt

5
H
t

(28)

which is the expected result.
In the same manner, we get for the 4-orbital momentum

dLmn

dt
5 m

d
dt

(ẋmẋn 2 ẋnẋn) 5 m(ẋmẍn 2 ẍmẋn)

5 q(ẋnF nr ẋr 2ẋn Fmrẋr) 5 [H, Lmn] (29)

as expected.

4. MAXWELL EQUATIONS

Our formal construction will give the Maxwell equations because it
leads to the fundamental result (15), which is the starting point of Feynman’s
proof of the first group of Maxwell equations. The difference is that our
main property is equation (10) and not the Leibniz rule (19). So our derivation
will be obtained differently and will give in addition the two groups of
Maxwell equations.

To be general, we choose as in ref. 8 the following definition for the
gauge curvature:

[ẋm, ẋn] 5 2
1

m2 (qFmn 1 g*Fmn (30)

where g will be interpreted as the magnetic charge of the Dirac monopole,
the *-operation being the Hodge duality.

A simple derivative gives

d(qFmn(x) 1 g* Fmn(x))
dt

5 qrFmn(x)ẋr 1 gr*Fmn(x)ẋr (31)

and means of the fundamental relation (10) we obtain
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d(qFmn(x) 1 g*Fmn(x))
dt

5 [H, qFmn(x) 1 g*Fmnx)]

5 2
m3

q
[ẋr, [ẋm, ẋn]]ẋr (32)

Now using the Jacobi identity, we rewrite this expression as

d(qFmn(x) 1 g*Fmn(x))
dt

5
m3

q
([ẋm, [ẋn, ẋr]]ẋr 1 [ẋn, [ẋrẋm]]ẋr)xr

5 2q(mF nr 1 nF rmx)ẋr

2 g(m*F nr 1 n*F rmx)ẋr (33)

By comparing equations (31) and (33), we deduce the following field equation:

q(mF nr 1 nF rm 1 rFmn) 1 g(m*F nr 1 n*F rm 1 r*Fmn) 5 0 (34)

that is,

H mF nr 1 nF rm 1 rFmn 5 gNmnr

m*F nr 1 n*F rm 1 r*Fmn 5 2qNmnr (35)

where N mnr is a tensor to be interpreted.
Using the differential forms language defined on the Minkowski space

(M4), we write the preceding equations in a compact form:

HdF 5 gN
d*F 5 2qN

(36)

where F and *F P ∧2(M4) and N P ∧3(M4).
If we put

HgN 5 2*k
qN 5 *j

(37)

where j and k P ∧1(M4), we deduce

HdF 5 j
dF 5 2*k

(38)

d is the usual codifferential

d: ∧k(M4) → ∧k21(M4)

defined here as
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d 5 (2)k(42k11)11(*d*)

Interpreting the 1-forms j and k as the electric and magnetic four-dimensional
current densities, we obtain the two groups of Maxwell equations in the
presence of a magnetic monopole. The situation without monopole is obtained
by putting the 1-form k equal to zero.

We easily see by means of the Poincaré theorem that

d2F 5 dj 5 0 (39)

which is nothing else than the current density continuity equation:

m jm 5 m[ẋm, jm] 5 0 (40)

From the skew property of the brackets, we can choose

jm 5 rẋm (41)

r is the charge density, whose dynamic evolution is given by

dr
dt

5 [H, r] 5 m[ẋm, r]ẋm 5 (mr)ẋm 5 mjm 5 0 (42)

We see that H automatically takes into account the gauge curvature. It plays
the role of a Hamiltonian not with the usual Poisson brackets, but with new
four-dimensional brackets which can be related to for example, those used by
Feynman in his derivation of the Maxwell equations as published by Dyson.(5)

5. APPLICATION TO CURVED SPACE

In this section we extend the previous analysis to the case of a general
space time metric gmn(x).

In this case we define the covariant Hamiltonian from the usual funda-
mental quadratic form ds2 in the following manner:

H 5
1
2

m1ds
dt2

2
1
2

mgmn(x)ẋmẋn

In the same manner as in Section 3, we can prove the relation between the
metric tensor and the bracket structure:

m[ẋn, xm] 5 gmn(x)

The law of motion is
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ẍm 5 [H, ẋm] 5
1
2

m[gnr, ẋm]ẋnẋr 1 m[ẋn, ẋm]ẋn

5 2
1
2

mgnrẋnẋr 2 N nmẋn (43)

where we define N mn(x, ẋ) as

[ẋm, ẋn] 5 2
Nmn(x, ẋ)

m
(44)

Note that this tensor is now velocity-dependent, in contrast to the Minkow-
ski case.

By means of equations (23) and (43), we deduce the relation

Nmn

ẋr
5 ngrm 2 mgrn (45)

Then

Nmn(x, ẋ) 5 2(mgrn 2 ngrm)ẋr 1 nmn(x) (46)

where the tensor nmn(x) is only position dependent. If we introduce this
equation in (43), we find

ẍm 5 2
1
2

mgnrẋnẋr 2 (mgrn 2 ngrm)ẋnẋr 1 nmn(x)xn

5
1
2

mgnrẋnẋr 2 1mgrn 2
1
2

ngrm 2
1
2

rgnm2ẋnẋr 1 nmn(x)ẋn

5 2Gnrmẋnẋr 1 nmn(x)ẋn (47)

where we have defined the Christoffel symbols by

Gnrm 5
1
2

([ẋr, [ẋn, xm]] 2 [ẋn, [ẋr, xm]] 2 [ẋm, [ẋr, xn]]) (48)

5
1
2

(rgnm 2 ngrm 2 mgrn) (49)

Comparing this with the usual law of motion of a particle in an electromagnetic
field, as in the situation of flat space, we can put

Fmn (x) 5
m
q

nmn(x) (50)

and get the equation of motion of a particle in curved space:
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m
dẋm

dt
5 2mGm

nrẋnẋr 2 qF nmẋy (51)

so that

[H, ẋm] 5 2Gm
nrẋnẋr 2

q
m

F nmẋy (52)

Note the difference between the two tensors N mn and Fmn whose definitions are

5[ẋm, ẋn] 5 2
Nmn

m
5 2gmrgns

Nrs

m

[ẋm, ẋn] 5 2
Fmn

m
5 2gmrgns

F rs

m

(53)

and more generally

5[ẋm, f (ẋ, t)] 5
Nmn

m
f (ẋ, t)

ẋn

[ẋm, f (ẋ, t)] 5
Fmn

m
f (ẋ, t)

ẋn

(54)

As in the case of flat Minkowski space, it is not difficult to recover the
two groups of Maxwell equations with or without monopoles. In this last
case we must take the following definition for the dual field

*Fmn 5
1

2!2g
«mnrsFrs (55)

Now we will show that the covariant derivative and the curvature tensor
can be naturally introduced with our formalism.

5.1 Covariant Derivative

As in the flat-space case, the equation of motion can be rewritten in the
two following ways:

m
dẋm

dt
5 2mGm

nrẋnẋr 2 qF nmẋy (56)

and

m
dẋm

dt
5 m

ẋm

xn ẋn (57)

We then put
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ẋm

xn 5 2Gm
nrẋr 1

q
m

Fm
n 5 [H 8, ẋm] (58)

From equation (58), a covariant derivative can be defined by means of the
brackets. For an arbitrary vector we put

m[ẋn, Vm(x)] 5
Vm(x)

xn (59)

We then define as the usual covariant derivative

[Dn, Vm] 5
Vm

xn 1 Gm
nrV r (60)

and for an arbitrary mixed tensor

[Dn, Tm
s] 5

Tm
s

xn 1 Gm
nrT r

s 2 Gr
nsTm

r (61)

For the particular case of the velocity we get

[Dn, ẋm] 5
ẋm

xn 1 Gm
nrẋr 5

q
m

Fm
n (62)

and in addition we recover the standard result

[Dn, gmn] 5 0

5.2. Curvature Tensor

From this definition of the covariant derivative we can naturally express
a curvature tensor by means of the brackets. Let us compute the following
expressions:

[Dm, [Dn, V r]] 5 [ẋm, nV r 1 Gnr
s Vs]

1 Gmn
a (aV r 1 Gar

s Vs) 1 Gmr
a (nVa 1 Gan

s Vs)

5 mnV r 1 m(Gnr
s )Vs 1 Gnr

s (mVs) 1 Gmn
a (aV r 1 Gar

s Vs)

1 Gmr
a (nVa 1 Gan

s Vs) (63)

and therefore

[Dm, [Dn, V r]] 2 [Dn, [Dm, V r]]

5 m(Gnr
s )Vs 2 n(Gmr

s )Vs 1 Gmr
a Gan

s Vs 2 Gnr
a Gam

s Vs

1 Gnm
a (aV r 1 Gar

s Vs) 2 Gmn
a (aV r 1 Gar

s Vs)

5 Rmnr
s Vs 1 Vmn

a DaV r (64)
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where we have introduced the torsion tensor Vmn
a 5 Gnm

a 2 Gmn
a 5 0 and the

curvature tensor Rmnr
s . Due to the symmetry property of the Christoffel sym-

bols, the curvature tensor is reduced to

Rmnr
s Vs 5 m(Gnr

s )Vs 2 n(Gmr
s )Vs 1 Gmr

a Gan
s Vs 2 Gnr

a Gam
s Vs (65)

The Jacobi identity gives

[Dm, [Dn, V r]] 1 [Dn, [V r, Dm]] 1 [V r, [Dm, Dn]] 5 0 (66)

that is

[Dm, [Dn, V r]] 2 [Dn, [Dm, V r]] 5 [[Dm, Dn], V r] 5 0 (67)

and finally

[[Dm, Dn], V r] 5 Rmnr
s Vs (68)

Remark 2. We can also define the Ricci and the electromagnetic energy-
momentum tensors, but we were unable to deduce the Einstein equation from
this formalism. Naturally, we can write this equation with our brackets as a
constraint equation.

Remark 3. We can generalize the covariant derivative by including the
skew-symmetric tensor Fm

n in the definition. For this we take into account
the gauge curvature for the determination of the new covariant derivative.

For a vectorial function of the velocity we write

[Dn, f m(ẋ)] 5
f m(ẋ)

xn 1 Gm
nr f r(ẋ) 2

q
m

Frn
f m(ẋ)

ẋr
(69)

and then for the velocity

[Dn, ẋm] 5
ẋm

xn 1 Gm
nr ẋr 2

q
m

Fm
n 5 0 (70)

The covariant derivatives, are then simultaneously covariant under both
local internal and external gauges. If we want to keep a synthetic form for
the formulas using the curvature and torsion tensors, we must suppose for
an arbitrary vector the relation

[Dn, Vm] 5
Vm

xn 1 Gm
nrV r 2 AnVm (71)

where the vector An is defined by the following equation:

Fmn 5 m ([ẋm, An] 2 [ẋn, A]m) (72)

Therefore we have
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[Dm, [Dn, V r]] 2 [Dn, [Dm, V r]] 5 [[Dm, Dn], V r]

5 Rmnr
s Vs 1 Vmn

a DaV r 1 FmnV r (73)

We define a new “generalized” curvature tensor which matches the local
electromagnetism internal symmetry with the local external symmetry:

Rmnr
s Vs 5 Rmnr

s Vs 1 FmnV r (74)

Then

[[Dm, Dn], V r] 5 Rmnr
s Vs (75)

6. CONCLUSION

The goal of this work was to study the dynamics associated with the
Lorentz-covariant Hamiltonian well known in analytic mechanics. For this,
we introduced a four-dimensional bracket structure which gives an algebraic
structure, between the position and velocity and generalizes the Poisson
brackets. This leads us to introduce a new time parameter which is not the
proper time, but is the conjugate coordinate of this covariant Hamiltonian.
This formal construction allows us to recover the two groups of Maxwell
equations in flat space. This approach is close to the one used by Feynman
in his own derivation of the first group of Maxwell equations.

The principal interest of this method, besides the phase space formalism,
is in the study of theories with gauges symmetries because it avoids the
introduction of the non-gauge-invariant momentum.

Our formalism can be directly extrapolated to curved space, where the
principal notions are introduced in a natural manner. A five-dimensional
structure can also be studied by considering the t parameter as a fifth coordi-
nate. In such a case equations take a simpler form, particularly the group of
Maxwell equations, but the meaning of this new coordinate is still difficult
to interpret, and could be perhaps understood in the context of Kaluza–Klein
compactification.

Just after finishing this work we received a paper referring to the covari-
ant Hamiltonian in the context of Feynman’s proof of the Maxwell
equations.(11)
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